
ECE 264 Spring 2023
Advanced C Programming

Aravind Machiry
Purdue University

Homework 17 & 18
Huffman Compression

yunglu@purdue.edu

HW 17 & HW 18
• HW17: Rebuild the Huffman compression tree from post-order
traversal and print the code book

• HW18: Use the code book to compress the end of a file and
save the bits (need bitwise operations). Only the end (excerpt)
of a file is used so that it is shorter and easier to debug.

yunglu@purdue.edu

Remember!!
typedef struct treenode

{

 struct treenode * left;

 struct treenode * right;

 char value; // character

 int occurrence;

} TreeNode;

typedef struct listnode

{

 struct listnode * next;

 TreeNode * tnptr;

} ListNode;

yunglu@purdue.edu

HW 17
• Input: 1A 1m 1# 1 G 0 00 1c 1s 0 0 0
• Build the tree
• Output the code book:

yunglu@purdue.edu

A

m

G

c s

A 0 0

m 0 1 0

0 1 1 0

G 0 1 1 1

c 1 0

s 1 1

HW 18 (bits)
compress #AcGms#Ac

yunglu@purdue.edu

A 0 0

m 0 1 0

0 1 1 0

G 0 1 1 1

c 1 0

s 1 1

data # A c G m s # A c

code (bits) 0110 00 10 0111 010 11 0110 00 10

byte 0110 00 10 0111 010 1 1 0110 00 1 0

byte 0110 00 10 0111 010 1 1 0110 00 1 0

add 7 zeros
xxd –b output: 0110 00 10 0111 010 1 1 0110 00 1 0000 0000

Homework 19
Maze

yunglu@purdue.edu

yunglu@purdue.edu

yunglu@purdue.edu

yunglu@purdue.edu

yunglu@purdue.edu

yunglu@purdue.edu

yunglu@purdue.edu

yunglu@purdue.edu

15

Compilation and Linking

main.c
math.c

main.o
math.o a.out

Load a.out to mem
Manage mem for proc

Instruction
execution

compiler linker? loader

memory
management

arch

16

Example
Main.c:

extern float sin();
main()
{
 static float x, val;

 printf(“Type number: ”);
 scanf(“%f”, &x);
 val = sin(x);
 printf(“Sine is %f”, val);
}

Math.c:

float sin(float x)
{
 static float temp1, temp2, result;

 – Calculate Sine –

 return result；
}

17

Example (cont)

● Main.c uses externally defined sin() and C library function
calls
● printf()
● scanf()

● How does this program get compiled and linked?

18

Compiler

● Compiler: generates object file
● Information is incomplete
● Each file may refer to symbols defined in other files

19

Components of Object File
● Header

● Two segments
● Code segment and data segment
● OS adds empty heap/stack segment while loading

● Size and address of each segment
● Address of a segment is the address where

the segment begins.

20

Components of Object File (cont)
● Symbol table

● Information about stuff defined in this module
● Used for getting from the name of a thing (subroutine/variable) to the

thing itself
● Relocation information

● Information about addresses in this module linker should fix
● External references (e.g. lib call)
● Internal references (e.g. absolute jumps)

● Additional information for debugger

21

What could the compiler not do?
● Compiler does not know final memory layout

● It assumes everything in .o starts at address zero
● For each .o file, compiler puts information in the symbol table to tell

the linker how to rearrange outside references safely/efficiently
● For exported functions, absolute jumps, etc

22

Compiler: main.c

printf
scanf

sin

call 0

x, val

...

call 0

call 0

call 0

0x000

0x000

Data

Code

Relocation
Records

main.o

main

main Symbol Table

23

Compiler: math.c

float sin(..)

result

return result

0x000

0x000

Data

Code

math.o

sin

sin Symbol Table

24

Linker functionality

● Three functions of a linker
● Collect all the pieces of a program
● Figure out new memory organization

● Combine like segments
● Does the ordering matter? (spatial locality for cache)

● Touch-up addresses

● The result is a runnable object file (e.g. a.out)

25

Linker – a closer look

● Linker can shuffle segments around at will, but cannot
rearrange information within a segment

26

Linker requires at least two passes

● Pass 1: decide how to arrange memory

● Pass 2: address touch-up

27

Pass 1 – Segment Relocation

● Pass 1 assigns input segment locations to fill-up output
segments
● Read and adjust symbol table information
● Read relocation info to see what additional stuff from libraries is

required

28

Pass 2 – Address translation

● In pass 2, linker reads segment and relocation information
from files, fixes up addresses, and writes a new object file

● Relocation information is crucial for this part

29

Putting It Together

● Pass 1:
● Read symbol table, relocation table
● Rearrange segments, adjust symbol table

● Pass 2:
● Read segments and relocation information
● Touch-up addresses
● Write new object file

30

Linker

float sin(..)

result

return result

0x000

0x000

math.o

sin

printf
scanf

sin

call 0

x, val

...

call 0

call 0

call 0

0x000

0x000

main.o

main

printf
scanf

call print

x, val, result

...

call print

call scanf

call sin

0x40001028

a.out

main

float sin(..)

return result

0x40001000 sin

Procedure Linkage Table (PLT)

0x40002000

Linker

sin

main

sin
main

